Diversity of transition pathways in the course of crystallization into ice VII.

نویسندگان

  • Kenji Mochizuki
  • Kazuhiro Himoto
  • Masakazu Matsumoto
چکیده

We report various types of pathways emerging in the course of freezing into a high pressure ice VII by large-scale molecular dynamics (MD) simulations at 10 GPa, 425 K. Some trajectories showed an apparently stepwise transition via the unique metastable "phase" in accordance with Ostwald's step rule. The metastable structure was identified as one of the tetrahedrally close-packed structures having the nature of a rotator phase (plastic phase). The unit cell consists of 21 water molecules that has not yet been reported by simulation or by experiments. Structure analysis of numerous trajectories reveals that the nucleation of ice VII easily occurs at the grain boundaries of the metastable embryos, known as epitaxy-mediated transformation in line with Ostwald's step rule. The size of the grain boundaries is thus responsible for the lifetime of the metastable phase. On the other hand, once the embryo of ice VII appears prior to that of the metastable phase in liquid, direct transition to ice VII takes place. We also show that the plastic behavior of the metastable phase is not uniform but is sensitive to the interaction strength of adjacent molecules and the local structure, thus we call "partially plastic ice".

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High pressure Raman spectroscopy of H2O-CH3OH mixtures

Complex intra-molecular interactions and the hydrogen-bonding network in H2O-volatile mixtures play critical roles in many dynamics processes in physical chemistry, biology, and Earth and planetary sciences. We used high pressure Raman spectroscopy to study the pressure evolution of vibrational frequencies and bonding behavior in H2O-CH3OH mixtures. We found that the presence of low CH3OH conte...

متن کامل

Freezing transition of interfacial water at room temperature under electric fields.

The freezing of liquid water into ice was studied inside a gap of nanometer spacing under the control of electric fields and gap distance. The interfacial water underwent a sudden, reversible phase transition to ice in electric fields of 10(6) V m(-1) at room temperature. The critical field strength for the freezing transition was much weaker than that theoretically predicted for alignment of w...

متن کامل

Pressure-induced transformations in computer simulations of glassy water.

Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexa...

متن کامل

Trapping and release of CO2 guest molecules by amorphous ice.

Interactions of 13CO2 guest molecules with vapor-deposited porous H2O ices have been examined using temperature-programmed desorption (TPD) and Fourier transform infrared (FTIR) techniques. Specifically, the trapping and release of 13CO2 by amorphous solid water (ASW) has been studied. The use of 13CO2 eliminates problems with background CO2. Samples were prepared by (i) depositing 13CO2 on top...

متن کامل

Hydrogen bond topology and the ice VII/VIII and Ih/XI proton ordering phase transitions.

Ice Ih, ordinary ice at atmospheric pressure, is a proton-disordered crystal that when cooled under special conditions is believed to transform to ferroelectric proton-ordered ice XI, but this transformation is still subject to controversy. Ice VII, also proton disordered throughout its region of stability, transforms to proton-ordered ice VIII upon cooling. In contrast to the ice Ih/XI transit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 31  شماره 

صفحات  -

تاریخ انتشار 2014